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A new formulation is introduced for enforcing incompressibility in Smoothed
Particle Hydrodynamics (SPH). The method uses a fractional step with the velocity
field integrated forward in time without enforcing incompressibility. The resulting
intermediate velocity field is then projected onto a divergence-free space by solving a
pressure Poisson equation derived from an approximate pressure projection. Unlike
earlier approaches used to simulate incompressible flows with SPH, the pressure is not
a thermodynamic variable and the Courant condition is based only on fluid velocities
and not on the speed of sound. Although larger time-steps can be used, the solution of
the resulting elliptic pressure Poisson equation increases the total work per time-step.
Efficiency comparisons show that the projection method has a significant potential
to reduce the overall computational expense compared to weakly compressible SPH,
particularly as the Reynolds number,Re, is increased. Simulations using this SPH
projection technique show good agreement with finite-difference solutions for a
vortex spin-down and Rayleigh–Taylor instability. The results, however, indicate
that the use of an approximate projection to enforce incompressibility leads to error
accumulation in the density field.c© 1999 Academic Press

1. INTRODUCTION

Smoothed particle hydrodynamics (SPH) is a fully Lagrangian, particle-based technique
that has typically been used to simulate the motion of compressible fluids. It was originally
developed for astrophysical applications [12, 20] but has since been extended to model a
wide range of problems including multi-phase flows [23], deformation and impact problems
[34], and heat conduction [8]. More recently it has been extended and used to simulate the
motion of incompressible fluids [24, 27]. Incompressibility is approximated in [24, 27]
by assuming a compressible fluid with a large sound speed—typically a Mach number
of M ≈ 0.1 is used. This approach will be termed here “weakly compressible” SPH or
“WCSPH” and results obtained using this approach have been acceptable for free surface
and some low Reynolds number flows, although not for fully confined moderate and high
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Reynolds number flows. Compressibility causes problems with sound wave reflection at
the boundaries and the high sound speed leads to a crippling CFL time-step constraint.

A different approach to modeling free surface, incompressible flows using a fully
Lagrangian technique was the particle method proposed by Koshizukaet al. [17], where
a penalty-like formulation was employed to adjust the pressure where density variations
occurred. An iterative process that converged when density changes were below a specified
tolerance was used. A similar approach was used in [18], where a pressure Poisson equation
was solved instead of a penalty method with source term proportional to density variations.
It is not clear though how efficient or accurate these methods are for free surface modeling
compared to the use of WCSPH.

More traditional approaches to solving the incompressible Navier–Stokes equations on
Eulerian grids often use an explicit projection to enforce incompressibility. Originally devel-
oped in [7] and later adapted in [4], the projection approach has been employed extensively
in grid-based methods such as finite-difference [1, 5] and finite elements [14], but it has not
been extended to the SPH environment.

In this paper, a technique that enforces incompressibility in SPH by employing an ap-
proximate pressure projection is described. The method utilizes a fractional step with the
velocity field first integrated forward in time without enforcing incompressibility. The re-
sulting intermediate velocity field is projected onto a divergence-free space by solving a
pressure Poisson equation. Because the method uses an incompressible formulation, sound
waves are not admitted and the CFL condition is based purely on the fluid velocity field,
allowing use of time steps significantly larger than those used in WCSPH. Although the
allowable time-step increases when a pressure projection is employed, the projection step
requires solution of an elliptic problem, and the amount of work per time-step increases.
The objective of this paper is to present an SPH technique that utilizes a projection method
to model incompressible flows, and to investigate its efficiency and robustness compared to
weakly compressible SPH. This SPH projection approach will be termed here “PSPH.” The
choices of time integration, projection operator, divergence, gradient, and viscous terms are
described along with the treatment of boundary conditions and the numerical techniques
used to solve the resulting elliptic problem. Numerical results for a vortex spin-down prob-
lem and a Rayleigh–Taylor instability are presented using both the projection method and the
weakly compressible approach. A comparison of the total CPU times of the two techniques
is also provided for the vortex spin-down. These results indicate that the proposed projection
method is more robust and more efficient than the current weakly compressible approach.

2. SPH PROJECTION METHOD

2.1. Weakly Compressible SPH

In SPH the fluid is represented by a set of particles which follow the fluid motion and
advect fluid quantities such as mass and momentum. In this Lagrangian framework, the
Navier–Stokes equations are reduced to a set of ordinary differential equations at each
particle. Smoothness and differentiability of the solution are achieved using an interpolation
kernelW and summations over the particlesb,

Q(r) =
∑

b

mb
Qb

ρb
W(|r − rb|, h) and ∇Q(r) =

∑
b

mb
Qb

ρb
∇W(|r − rb|, h).



586 CUMMINS AND RUDMAN

Here,h is the smoothing length, which in this paper is constant and is between 1 and 1.5 times
the initial particle separation depending on the particular application. The mass, density, and
position of particleb aremb, ρb, andrb. There are a number of ways in which the Navier–
Stokes equations can be represented in SPH (see [25]). The formulation implemented here
is described by Monaghan [25] and represents the non-dimensional momentum equation at
particlea as

dua

dt
= −

∑
b

mb

[(
Pb

ρ2
b

+ Pa

ρ2
a

)
∇aWab+ χab

]
+ g

Fr 2
, (1)

wherePb andub are the pressure and velocity at particleb. The pressure gradient term is
designed to conserve total linear and total angular momentum [25]. The viscous stresses
areχab, g is a body force, andFr is the Froude number. In this study the viscosity treatment
proposed in [9] is used,

χab = − 1

Re

1

ξ

(
4

ρa + ρb

)
uab · rab

|rab|2+ η2
∇aWab, (2)

whereξ is a calibration factor. In [9],ξ = 0.2015 in Couette flow simulations is used.
However, comparisons between this viscosity treatment and that used in [27] to simulate
low Reflows in SPH suggest that an appropriate value for the simulations presented in this
paper isξ = 0.24.

Density is evolved using the continuity equation

dρa

dt
=
∑

b

mb(ua − ub) · ∇aWab. (3)

In (1) to (3),rab= ra− rb, uab= ua− ub, andη is a small parameter included to ensure
that the denominator remains nonzero. The notationWab is shorthand for

Wab = W(rab, h) = 1

hσ
f

( |rab|
h

)
, (4)

where f is the interpolation kernel function andσ is the dimensionality of the problem.
There are many choices forf and here, cubic or quartic spline kernel functions are used.
The cubic kernel function (normalized for one dimension) is defined as

f (s) = 2

3


1.0− 3s2/2+ 3s3/4, 0≤ s< 1.0

(2− s)3/4, 1.0≤ s< 2.0

0, s ≥ 2.0

(5)

and is used to test the PSPH projection operator (see Section 2.3.2). The quartic spline
kernel function (normalized for two dimensions) defined as

f (s) = 0.0255


(2.5− s)4− 5(1.5− s)4+ 10(0.5− s)4, 0≤ s< 0.5

(2.5− s)4− 5(1.5− s)4, 0.5≤ s< 1.5

(2.5− s)4, 1.5≤ s< 2.5

0, s ≥ 2.5

(6)

is used for the simulations presented in Section 3.
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In WCSPH simulations, the following equation of state [3] has been used [24],

P = c2ρ0

0

((
ρ

ρ0

)0
− 1

)
, (7)

wherec is the sound speed,0= 7, andρ0 is the initial reference density. To approximate
incompressibility, a large value ofc is employed, typically resulting in a flow Mach number
of M ≈ 0.1. Because compressibility effects areO(M2), use of this Mach number, in theory,
should result in maximum density variations of the order of 1%.

2.2. Time Integration

A first-order Euler time-step is employed in this study for ease of discussion, although
higher order schemes are easily implemented. The particle positions,rn

a, are advected with
velocityun

a to positionsr∗a,

r∗a = rn
a +1t

(
un

a

)
. (8)

At these positions, an intermediate velocity field,u∗a, is calculated by integrating the SPH
momentum equation forward in time without the pressure gradient term:

u∗a = un
a −1t

(∑
b

mbχ
n
ab(r

∗)+ g
Fr 2

)
. (9)

The following pressure Poisson equation is then solved to obtain the pressure needed to
enforce incompressibility:

∇ ·
(

1

ρ
∇P

)
a

= ∇ · u
∗
a

1t
. (10)

The pressure gradient is next added to obtain a divergent-free velocity field:

un+1
a = u∗a −1t

∑
b

mb

(
Pb

ρ2
b

+ Pa

ρ2
a

)
∇aWab. (11)

Finally, the particle positions are centered in time,

rn+1
a = rn

a +1t

(
un+1

a + un
a

2

)
. (12)

The scheme isO(1t) because an explicit treatment of the viscous term is used and the
projection is performed at particle positionsr∗a that are found from anO(1t) integration
of un

a. The intermediate velocity fieldu∗a does not depend on the pressure gradient from the
previous time-step. This type of projection is termed afull pressure projection. In contrast,
an incremental pressure projection projects an intermediate velocity field that incorporates
the pressure gradient from the previous time-step. Combining a full pressure projection
with an approximate projection operator (see Section 2.3.2) has been shown to avoid error
accumulation in grid-based methods [30], and was also found to give superior results with
PSPH.
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2.3. Pressure Projection

2.3.1. Projection Fundamentals

In a projection method, the pressure needed to enforce incompressibility is found by
projecting an estimate of the velocity field onto a divergence-free space. The theory behind
the projection approach is based on the Hodge decomposition which states that any vector
field, V, can be decomposed into a divergence-free component,Vd, and the gradient of
some scalar,φ (a curl-free component). Thus,

V = Vd+∇φ. (13)

The projection operator,P, for a variable density flow is [5]

P= I − σG(DσG)−1D, (14)

whereD is a divergence operator,G is a gradient operator, andσ = 1
ρ
. The projectionP will

project any vectoru∗ onto the space of divergence-free vector fields providedD=−(σG)T .
Typically, u∗ is an intermediate estimate of the velocity field obtained from updating the
momentum equations either by using a time-lagged pressure gradient or by neglecting the
pressure gradient altogether.

In the majority of projection techniques, the Hodge decomposition is undertaken by
solving for the curl-free component,∇φ, and subtracting it from the original vectoru∗.
This is achieved by solving the pressure Poisson equation (PPE)

DσGP = Du∗

1t
(15)

for the pressureP and subtracting1tσGP from u∗ to give the incompressible velocity
field un+1:

un+1 = u∗ −1t (σGP). (16)

2.3.2. An SPH Projection Operator

There are a number of different grid-based projection algorithms discussed and analyzed
in the literature (e.g., [30]). Either an exact projection or an approximate projection can
be used. An exact projection operator is constructed by ensuring that the divergence and
gradient operators are discretely skew adjoint, i.e.,D=−(σG)T . It can be shown that the
SPH divergence operator defined by

∇ · ua = ρa

∑
b

mb

(
ub

ρ2
b

+ ua

ρ2
a

)
· ∇aWab (17)

is skew adjoint to the gradient operator used in (1) when the density is constant. Employing
these adjoint SPH divergence and gradient operators at constant density leads to the pressure
Poisson equation

(DG)Pi =
∑

j

mj

ρ j

(∑
l

ml

ρl
Pl∇ j Wl j

)
· ∇i Wi j = Du∗i

1t
. (18)
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FIG. 1. P vs y andt using a cubic spline kernel,h= 1.41x, N= 20. (a) Exact projection operator. (b) Ap-
proximate projection operator. Note the pressure decoupling using the exact projection operator.

This exact projection was tested on a simple one-dimensional hydrostatic equilibrium
problem, using the cubic spline kernel given in (5) withh= 1.41x. The results are shown
in Fig. 1a. The exact projection operator produces a distinct pressure decoupling pattern
similar to that observed in exact projection methods on co-located finite-difference grids
[31]. Analogous problems have also occurred with equal-order interpolation elements in
finite-element methods [32]. This type of problem also hampers convergence when iterative
techniques are used to perform the projection.

Approximate projection methods were introduced (for example, [30]) in grid-based meth-
ods to avoid these decoupling problems. Unlike exact projection methods, the divergence
and gradient operators are not discretely skew adjoint but are chosen so that the Laplacian
operator,L = DσG, is easily discretized. For example, on a two-dimensional co-located
finite difference grid, the approximate projection operator is usually written as a five-point
Laplacian stencil whereas the exact projection,L = DσG, results in four sets of decoupled
five-point stencils [30].

In this paper, an approximate projection is used which utilizes the following SPH stencil
for the PPE operator in (10),

L(Pa) = DσG(Pa) =
∑

b

mb

ρb

(
4

ρa + ρb

)
Pab rab · ∇aWab∣∣r2

ab

∣∣+ η2
, (19)

where Pab= Pa − Pb. This is analogous to the approximation used in [22] for thermal
diffusion and also for the viscous diffusion term in (2). The approximate projection operator
was tested on the same one-dimensional hydrostatic equilibrium problem and the results are
shown in Fig. 1b. It prevents the pressure decoupling that arises when an exact projection
is used.

2.4. Solvability and the PPE Source Term

Because the pressure Poisson equation (10) employs Neumann boundary conditions for
P, a compatibility constraint must be satisfied in order for (10) to have a unique solution. This
constraint relates the source of the Poisson equation to the Neumann boundary conditions
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through the divergence theorem,∫
V
∇ ·
(

1

ρ
∇P

)
dV =

∫
V

∇ · u∗
1t

dV =
∫
0

n · u∗ dS= 0, (20)

providedu∗ satisfies the correct boundary conditions.
This implies that each time (10) is solved, the total sum of the discrete source terms

(
∑N

i=1∇ ·u∗i ) must be zero. In matrix form, the solution of the system

AP= b, (21)

whereA= L = DσG (symmetric) andb= Du∗/1t requiresb to be in the column space
of A, i.e., b∈ R(A). SinceA is constructed by using homogeneous Neumann boundary
conditions for the pressure, there exists a constant vector,c, in the left null space ofA, i.e.,
Ac= 0= ATc= cT A. Multiplying (21) bycT gives the constraint

cTb= 0, (22)

which again implies that in discrete form, the sum of the source terms is

N∑
i=1

∇ · u∗i = 0. (23)

On a finite-difference MAC grid, this solvability constraint is automatically satisfied for
Neumann velocity boundary conditions. However on other grids, additional measures are
required to satisfy it. For example, in [6, 33] solvability on a co-located grid was satisfied
by subtracting the mean value of the source term from each local discrete source while in
[1], the PPE was written in conservative form.

In PSPH, the solvability constraint is satisfied by employing the divergence operator
given by (17) (assumingma/ρa=mb/ρb). This expression is analogous to the pressure
gradient term in (1). Whereas the pressure gradient term in (1) conserves total momentum,
the divergence term in (17) conserves total mass.

2.4.1. Elliptic Solvers

There are many different techniques that can be used to solve (10). Here, two methods are
considered: a defect correction multi-grid method; and a conjugate gradient method with
a diagonal pre-conditioner. The multi-grid method was implemented in a spirit similar to
that in [26], where it was used to solve for the gravitational potential in interstellar cloud
simulations. Unlike in [26], the Poisson equation is satisfied on the particles rather than on
the underlying grid. This is done by treating the particles as the finest level grid. Coarse
level grids are uniform rectangular grids, each of which has twice the grid spacing of the
next finer grid. The first coarse mesh has a grid spacing of 2.5h× 2.5h. At the particle level
and all coarser levels, Gauss–Seidel relaxation is applied and the error restricted to the next
level grid using the quartic spline kernel given by (6). At coarse levels, a standard defect
correction multi-grid technique is used, with the correction prolonged to finer grids using
a bilinear interpolation. Bilinear interpolation is also used to prolong the correction to the
particles. To avoid large memory requirements, the matrixA= L = DσG for the particle
level Gauss–Seidel and conjugate gradient iterations is stored in sparse form.
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2.5. Boundary Conditions

Two issues arise in the implementation of boundary conditions in the PSPH technique.
The first issue is the choice of appropriate boundary conditions and the second issue is
the method of application of these conditions. Homogeneous Neumann boundary condi-
tions are used for the pressure in (10) and the Dirichlet conditionsu∗ =w andun+1=w
are enforced on solid boundaries (w is the prescribed boundary velocity). These boundary
conditions do not satisfy the correct pressure boundary conditions required for the incom-
pressible Navier–Stokes equations [15]; however, they have been shown to work well in
practice when combined with projection methods [14]. These conditions are implemented
here using external, fictitious particles whose positions are defined by reflecting the inte-
rior fluid particles across the boundary position. The effect of these fictitious particles is
implicitly included in the summations for the gradient, projection, and viscous operators
in the following way. Referring to Fig. 2a, for a given particle pair interaction,a→ b, an

FIG. 2. Boundary treatment. (a) For a particleb near an edge interacting with a particlea an additional
interaction needs to take place between particlesa andbf . bf is a fictitious particle that can be considered a
reflection ofb across the boundaries. (b) For a particleb near a corner interacting with a particlea, three additional
interactions need to take place between particlea and the three reflected particlesbf .
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additional interactiona→ bf is included in the summation. The fictitious particlebf has
the following properties:

• Position—rbf is found by a direct reflection of particleb across the boundary line. The
position of particlebf therefore mirrors that ofb.
• Velocity—For the wall-bounded simulations in this paper, no slip velocity conditions

u∗bf
= 2w− u∗b andun+1

bf
= 2w− un+1

b are employed. This is a linear extrapolation of the
interior and boundary velocities to obtain the external velocity. It is similar to the technique
used in finite-difference methods. In this way,u∗int =w and un+1

int =w is ensured at any
point along the boundary (uint is a velocity along the boundary that would result from
interpolating the surrounding internal and assigned external particle velocities). This is
important for obtaining an accurate representation of the viscous operator associated with
particlea whena is near the boundary. Whena is on the boundary,u∗a=w andun+1

a =w is
set and evaluation of the viscous term ata is not required.
• Pressure—Pbf = Pb. In this way, homogeneous Neumann boundary conditions∂P

∂n = 0
are enforced along the boundary line. This is important for obtaining an accurate representa-
tion of the projection and gradient operators associated with particlea whena is near or on
the boundary. Whena is on the boundary,Pa is found by solving (10) with∇ · u∗a/1t = 0.
Setting∇ · u∗a/1t = 0 on the boundary is correct as long asn · (u∗ − w)= 0 (see [15]),
which is consistent with the velocity boundary conditions applied here.

Figure 2b shows how this boundary treatment is generalized for corners.
Unlike the gradient, projection, and viscous operators, the effect of these fictitious parti-

cles is not included in the summations for the divergence operator. This choice was made
to ensure that the solvability constraint (23) is automatically satisfied. It is possible to im-
plicitly include these fictitious particles in the summations for the divergence operator, but
additional measures would then be required to satisfy solvability.

3. SIMULATIONS

To assess the accuracy and efficiency of the PSPH method, two problems (a two-
dimensional vortex spin-down and a Rayleigh–Taylor instability) are calculated using

1. an exact projection method performed on a staggered finite-difference MAC grid
[11];

2. the PSPH technique described in this paper with the quartic spline kernel (6) with
smoothing lengthh= 1.31x (where1x is the initial particle spacing); and

3. the WCSPH technique with the quartic spline kernel with smoothing lengthh= 1.31x
and an equation of state given by (7).

For both PSPH and WCSPH, a quantitative measure of incompressibility is provided for
PSPH and WCSPH by evaluating the coefficient of variation of number density,CV(t),
as a function of timet . It is a measure of the average variation of number density, at each
particle normalized with respect to the average number density, and is given by

CV(t) =
√

1
N

∑N
i=1(di (t)− di (0))2

1
N

∑N
i=1

di (t)
di (0)

, (24)

where the number density at particlea, da, is the interpolant of(ρ/m)a and is estimated
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using

da =
N∑

b=1

Wab. (25)

In an ideal incompressible SPH, particles would be advected to positions such that
CV(t)= 0 for all timest .

3.1. Vortex Spin-down

A two-dimensional vortex spin-down atRe= 420 is calculated, withρ= 1, g= 0, and an
initial velocity field given by

u = 0.25(y− 0.5)
(26)

v = 0.25(0.5− x)

in a unit square with boundary conditionsw= 0. The simulation was run from timet = 0 to
10 using an exact projection on a staggered finite-difference MAC grid, the PSPH technique,
and the WCSPH technique with the following specifications:

1. exact projection⇒ 128× 128 grid;
2. PSPH method⇒ 50× 50 particle lattice;
3. WCSPH method⇒ 50× 50 particle lattice with sound speedc= 1.25 using

Lennard-Jones type boundary forces (see Section 3.1.1).

The exact projection case is performed at a higher resolution to provide a close-to-“exact”
solution, from which both SPH techniques can be compared.

3.1.1. Optimal WCSPH Solution

As the choice of sound speed and boundary conditions can significantly affect the re-
sults of a compressible SPH simulation, six WCSPH simulations were calculated for this
problem from which the best solution was chosen. In the first three simulations, the bound-
ary conditions outlined in Section 2.5 (termed here as “PSPH boundary conditions”) were
employed with sound speedsc= 5.00, c= 2.50, andc= 1.25. Figure 3 shows the decay
of the maximum velocity magnitude (normalized with respect to the initial maximum ve-
locity magnitude) with time resulting from these three simulations. The remaining three
simulations were performed using the same three sound speeds with boundary particles
exerting Lennard-Jones type forces on fluid particles described in [24]. Figure 4 reveals
the corresponding velocity decay graphs. All six simulations show large oscillations up
to time t = 2.0 which decay as the maximum velocity decays. For both boundary condi-
tions, the use ofc= 5.00 leads to a noticeably faster decay rate than the use ofc= 1.25
andc= 2.50 and oscillations near timet = 9.0. Further investigation of these oscillations
reveals that they also occur forc= 2.50 andc= 1.25 at later times (at timet = 12.0 for
c= 2.50 and at timet = 16.0 for c= 1.25) and eventually lead to instabilities. Animations
of the spin-down velocity field show that the wavelength of the oscillation is large relative
to the particle spacing, indicating that it is a result of sound wave propagation rather than
a short wavelength tensile instability discussed in [28]. Cleary [10] has reported similar
sound wave propagations when simulating hydrostatic equilibrium using WCSPH. No such
instabilities were noted for the PSPH method.
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FIG. 3. Vortex spin-down velocity decay using WCSPH with sound speedsc= 1.25,c= 2.50, andc= 5.00
with PSPH boundary conditions.

The results forc= 1.25 andc= 2.50 using PSPH boundary conditions shown in Fig. 3
display a large anomalous jump in maximum velocity at timet = 8.50 which is not observed
for c= 5.00. Analysis of the particle velocities at this time reveals that these velocities occur
at particles close to the boundary which are repelled from the boundary because of the
PSPH boundary conditions. These anomalies were not observed when Lennard-Jones type

FIG. 4. Vortex spin-down velocity decay using WCSPH with sound speedsc= 1.25,c= 2.50, andc= 5.00
with Lennard-Jones type boundary forces.
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boundary forces were used because these forces prevent particles from getting too close to
the boundary.

This exercise highlights a major disadvantage of WCSPH—the need to refine results to
ensure that an appropriate combination of sound speed and boundary conditions is used
to give the most accurate solution. No such refinement was required for PSPH. Of the six
tests performed, the simulation usingc= 1.25 with Lennard-Jones type boundary forces
provided the best comparison to the exact projection velocity solution and is used as the
optimum WCSPH result in comparisons with PSPH and the exact projection technique.

3.1.2. Results

Figure 5 shows the streamlines and velocity vectors att = 8 for the exact projection, PSPH,
and WCSPH. The PSPH technique compares favorably with the finite-difference exact
projection technique but the WCSPH result not only exhibits noise (due to the continued
propagation and reflection of the sound waves off the solid boundaries) but also experiences
an increase in the effective viscosity of the flow. This increase in effective viscosity for
WCSPH is also seen in Fig. 7, which shows the decay of the maximum velocity magnitude
with time for all three techniques. The PSPH results compare well to the finite-difference
exact projection results throughout the entire simulation while the WCSPH technique gives
rise to a faster decay.

Figure 8 show the variation ofCVwith time for the two SPH methods. Results from PSPH
show a slow accumulation of density variation, withCVclimbing steadily to 0.015 att = 10.
After this time, the rate of increase inCVsignificantly reduces; by timet = 15 it rises only
to 0.016. (This is not entirely unexpected as the velocities and hence particle motion have
reduced significantly after timet = 10.) Results from the WCSPH technique initially rise
rapidly to CV= 0.015 and then stabilize at approximatelyCV= 0.009, remaining almost
constant after this time. The particle positions att = 10 shown in Fig. 6 provide insight
into the behaviour ofCV shown in Fig. 8. Slight gaps are visible in the particle positions
resulting from PSPH. These gaps gradually appear as the simulation progresses and are
a result of the fact that the shear field repeatedly compresses the flow in one direction
and extends it in another. In the WCSPH technique, a line of particles forms along the
boundary which is related to the use of boundary forces. This lining of particles occurs
early in the simulation (t < 1) and is the probable cause of the sudden rise inCV early in
the simulation.

The PSPH technique provides more accurate results for the velocity fields; it does, how-
ever, accumulate more error in local density (as seen by theCV comparisons in Fig. 8).
(Similar results were noted for this particular problem when run with doubly periodic bound-
ary conditions rather than solid wall boundaries. The WCSPH technique again produced a
larger velocity decay rate relative to the PSPH and exact projection methods and oscilla-
tions toward the end of the simulation, but a smallerCVvalue. The PSPH method produced
CV= 0.024 by timet = 15.0 compared toCV= 0.005 for WCSPH.) This accumulation
in local density error for the PSPH technique is not surprising since, for any projection
method, the resulting velocityun+1 is divergence free only to within a spatial truncation
error. Hence, errors in particle positions will result in density errors. Subsequent projections
are therefore performed at incorrect particle positions, causing further error accumulation.
Similar error accumulation occurs in vortex methods [29] and particle-in-cell methods [19],
which can be remedied by the use of rezoning techniques.
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FIG. 5. Vortex spin-down streamlines and velocity vectors at timet = 8.
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FIG. 6. Vortex spin-down particle positions at timet = 10. (a) PSPH method. (b) WCSPH method.

3.2. Rayleigh–Taylor Instability

The vortex spin-down problem does not utilize the natural advantages that Lagrangian
SPH methods have over grid-based methods. A more appropriate test case of the PSPH
method is the Rayleigh–Taylor instability in which the location of two different fluids and
the interface that separates them must be accurately followed. This phenomenon occurs in
a multitude of physical and industrial applications.

The initial conditions and specifications of the instability are given in Fig. 9. In this paper,
the different fluid densities were set by using particles with different masses but the same

FIG. 7. Vortex spin-down velocity decay using PSPH (denoted as SPH Projection), WCSPH (with Lennard-
Jones type boundary forces andc= 1.25, denoted as Compress. SPH), and the Exact Projection.
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FIG. 8. Vortex spin-downCV for PSPH (denoted as SPH Projection) and WCSPH (denoted as Compress.
SPH).

FIG. 9. Initial conditions and specifications of the Rayleigh–Taylor instability.
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number density, although this is not the only way to achieve different densities in SPH. The
simulation was performed using

1. exact projection⇒ 16× 32 staggered MAC grid (using a volume tracking method
to track the interface) [11];

2. PSPH method⇒ 53× 105 particle lattice;
3. WCSPH method⇒ 53× 105 particle lattice with sound speedc= 10

√
(|g|H)=

14.14 [24], whereH = 2 is the maximum height with Lennard-Jones type boundary forces
employed.

Unlike the vortex spin-down, where increased resolution does not result in finer scales of
motion (just smoother and more accurate results), numerical simulation of the Rayleigh–
Taylor instability keeps on producing finer scales of density stratification until the resolution
of the method is reached. When comparing the results for this problem, it is important to
ensure that the resolution of the SPH and finite difference methods are equivalent. In a
typical finite-difference simulation, the effective resolution scales with grid size1xF D. In a
typical SPH simulation, however, the effective resolution scales with the smoothing distance
of the kernel (2.5h when using the quartic spline kernel given by (6)). For a 53× 105 SPH
particle lattice using the quartic spline kernel andh= 1.31x, the equivalent finite-difference
resolution is approximately a 16× 32 grid.

The interface positions at timest = 3 andt = 5 for each method are shown in Figs. 10
and 11 and the streamlines att = 5 are shown in Fig. 12. The results for PSPH are closer
to the results from the exact projection in both the interface position and streamlines with
more fine scale structure predicted. However, by timet = 5, the plume is beginning to roll
up in the finite-difference simulation, but not in either of the SPH simulations.

This highlights a tendency for particles in some SPH simulations to “clump” together
near interfaces of different materials, producing an artificial surface tension that prevents
regions of high curvature from forming. This particle clumping is illustrated in Fig. 13,
which shows a plot of the particles near the interface at timet = 3. Hoover [16] has also

FIG. 10. Interface positions at timet = 3 for the Rayleigh–Taylor instability using (a) Exact Projection,
(b) PSPH, (c) WCSPH.
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FIG. 11. Interface positions at timet = 5 for the Rayleigh–Taylor instability using (a) Exact Projection,
(b) PSPH, (c) WCSPH.

noted this artificial surface tension in SPH and attributes it to the properties of the pressure
gradient operator used in this paper (see (1)). Both the divergence and gradient operators
(see (1) and (17)) are formulated assuming a differentiable density field and large density
discontinuities (such as those found at a fluid–fluid interface) cannot be accurately modeled
using these operators.

In Fig. 14,CV is plotted for PSPH and WCSPH. Like the use of the vortex spin-down,
the use of the PSPH method results in a slow accumulation of density variation withCV
climbing steadily to 0.011 att = 15. The WCSPH technique, in contrast, produces a large
density variation error, withCVrising continually to approximately 0.052 byt = 7 and then

FIG. 12. Streamlines at timet = 5 for the Rayleigh–Taylor instability using (a) Exact Projection, (b) PSPH,
(c) WCSPH.



AN SPH PROJECTION METHOD 601

FIG. 13. Particle positions at timet = 3 for the Rayleigh–Taylor instability using PSPH.

remaining approximately constant after this. This behavior is markedly different from that
produced by the vortex spin-down, which displayed an initial sharp rise inCV that leveled
off to 0.012. In terms of local density conservation, PSPH has performed far better than
WCSPH for this Rayleigh–Taylor instability.

To ensure that the most appropriate combination of sound speed and boundary con-
ditions was chosen, the simulation was also run with sound speedsc= 20

√
(|g|H) and

c= 5
√
(|g|H) using the Lennard-Jones boundary forces and sound speedsc= 20

√
(|g|H),

c= 10
√
(|g|H), and c= 5

√
(|g|H) using PSPH boundary conditions. Using the

FIG. 14. Rayleigh–Taylor instabilityCV for PSPH (denoted as SPH Projection) and WCSPH (denoted as
Compress. SPH) .
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Lennard-Jones boundary forces, rather than PSPH boundary conditions, resulted in more
stable and robust solutions for all sound speeds. Combining these boundary conditions
with sound speedc= 20

√
(|g|H) reduced the density error, producingCV= 0.048 by time

t = 15.0, but gave poorer velocity comparisons. In contrast, usingc= 5
√
(|g|H) produced

more comparable velocity fields but larger density errors, withCV= 0.062 by timet = 15.0.
Thus, the use of all three sound speeds in WCSPH still producesCV values significantly
larger than those produced by PSPH for the Rayleigh–Taylor instability. It is interesting to
note that the vortex spin-down problem produced a largerCVvalue using PSPH (CV= 0.016
by time t = 15.0) than did the Rayleigh–Taylor instability (CV= 0.011 by timet = 15.0),
despite the larger displacement of particles in the Rayleigh–Taylor problem. This is proba-
bly due to the more repetitive nature of the spin-down problem, which repeatedly stretches
the flow in the same direction.

3.3. Efficiency

The efficiency of the PSPH method was estimated by measuring the total CPU times
required to run the vortex spin-down problem to timet = 0.5 using:

1. WCSPH method (Compr.);
2. PSPH method, using multi-grid to solve (10) (MG);
3. PSPH method, using a conjugate gradient method with a diagonal pre-conditioner

to solve (10) (CGPD).

The Reynolds number was set at 420 and grid resolutions ranging from 27×27 to 105×105
were considered. The simulations were run on an R10000 SGI Power Challenge.

For the PSPH method atRe= 420, the time-step is governed by the CFL stability con-
straint

1t ≤ 0.25h

|u|max
(27)

for resolutions less than 50× 50. For higher resolutions, the viscous diffusion condition

1t ≤ 0.125 Reh2 (28)

is the dominant time-step constraint, where (28) is based on the Fourier stability analysis
for a finite-difference method on a uniform mesh.

For the WCSPH technique atRe= 420,1t is governed by the CFL stability constraint

1t ≤ 0.25h

c
(29)

(where the sound speedc= 1.25) for all resolutions.
Figure 15 provides the efficiency comparison results. The multi-grid projection is al-

ways more efficient than the weakly compressible technique, particularly so at the lower
and medium resolutions where the CFL condition governs. However, as the resolution in-
creases and the time-step constraint becomes more severe for the projection techniques (i.e.,
1t ∝ h2 due to the viscous diffusion condition), the time taken for the multi-grid projection
approaches the weakly compressible time. The conjugate gradient technique is also more
efficient than the weakly compressible SPH but only for resolutions less than 80× 80.
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FIG. 15. Vortex spin-down efficiency comparisons. CPU measurements for WCSPH (Compr.), multi-grid
PSPH (MG), and the conjugate gradient PSPH Projection with diagonal pre-conditioner (CGPD).

This is due in part to the fact that the diffusion time-step constraint becomes more severe
with resolution, but it is also due to the increasing work required per time-step. In both
the multi-grid projection and weakly compressible techniques, the work per time-step was
O(N) (since the multi-grid method obtained mesh independent convergence rates) whereas
for the conjugate gradient method, the number of iterations required for convergence per
time-step increased with resolution.

3.4. Convergence Analysis

A convergence analysis was performed for the vortex spin-down problem for PSPH and
WCSPH at timest = 1.0 through tot = 5.0. This analysis was performed in a manner similar
to that in which the analyses were done in [5, 30]. For the PSPH technique, at a given time,
a solution was computed on particle lattices 27× 27, 53× 53, and 105× 105. In order to
remove the effect of time discretization errors, a uniform time-step1t = 0.001 was used
for all resolutions. An estimate of theL1 andL2 errors for the velocity on the 27×27 lattice
can be obtained by interpolating the velocities from the 53× 53 lattice onto the 27× 27
lattice (using the quartic spline kernel given in (6)) and finding the difference between these
interpolated velocities and the actual velocities on the 27×27 lattice. Similarly, an estimate
of the errors on the 53× 53 lattice can be obtained using the velocities on the 105× 105
lattice. Table I provides the convergence results for the PSPH technique. At no time is
O(1x2) accuracy recorded with convergence rates ofO(1x1.5) to O(1x1.0) obtained for
both L1 and L2 norms. The convergence rate decreases as the integration time increases
and particles become more disordered.

The same convergence analysis was performed on the WCSPH technique using particle
lattices 32×32, 64×64, and 128×128 and a uniform time-step1t = 5.0×10−4. Table II
provides the results as in the PSPH technique,O(1x2) accuracy is not observed with
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TABLE I

Convergence Results forL1 and L2 Velocity Norms

Using the PSPH Method with the Quartic

Spline Kernel andh = 1.3∆x

convergence rates ofO(1x1.2) to O(1x0.5) obtained. The convergence rate also decreases
as the integration time increases and particles become more disordered.

Gingold and Monaghan [13] state thatO(h2) truncation error is typically expected in an
SPH simulation. However, in this study,O(h2) accuracy is not obtained for either theL1

or theL2 velocity norm for the given spline kernel and smoothing lengthh∝1x. In fact,
Monaghan [21] noted that to obtainO(1x2) accuracy, a smoothing lengthh∝1xq, q < 1,
is required (assuming that the flow is sufficiently smooth). Similar conclusions were also
reached in [29], where a convergence analysis was performed for the vortex method (which
uses smoothing kernels to evaluate a convolved velocity field from a discrete set of vortex
blobs), and [2], where smoothing kernels were used to evaluate surface tension forces.

To test this assertion further, a convergence analysis forh∝1x0.5 (usingh= 0.231x0.5)
was performed for the PSPH method on 27× 27, 50× 50, and 88× 88 particle lattices, the
results of which are shown in Table III. While the convergence rates do indeed increase, with
rates ofO(1x1.9) to O(1x1.7) recorded,O(1x2) convergence is not observed. This lack
of second-order convergence is due to the fact that solid wall boundaries prevent sufficient
smoothness in the flow. The boundary conditions used to model these solid walls (see
Section 2.5) are also a source of error leading to further reductions in convergence rate. To
isolate the effect of the solid wall boundary conditions on convergence rate, a convergence
analysis for the spin-down with doubly periodic boundary conditions was performed using
PSPH. The use of periodic boundary conditions resulted in higher convergence rates for
smoothing lengthsh= 1.31x and h= 0.231x0.5. Rates ofO(1x1.4) were consistently

TABLE II

Convergence Results forL1 and L2 Velocity Norms

Using the WCSPH Method with the Quartic

Spline Kernel andh = 1.3∆x
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TABLE III

Convergence Results forL1 and L2 Velocity Norms

Using the PSPH Method with the Quartic

Spline Kernel andh = 0.23∆x0.5

observed forh= 1.31x while for h= 0.231x0.5, convergence rates overO(1x2) were
observed.

4. CONCLUSIONS

The results presented in this study indicate that the PSPH technique has the potential to
simulate moderateReincompressible flows more accurately and more efficiently than the
present WCSPH technique. Its primary advantage is that it eliminates the requirements of
a sound speed and the problems associated with it (such as a restrictive Courant time-step
control) and is an alternative tool in analyzing the performance of SPH in the incompressible
environment.

Extensions of the technique to complicated domains are relatively straightforward, with
the main difficulties being a more generalized boundary treatment for the gradient, pro-
jection, and viscous operators and implementation of an efficient elliptic solver. However,
further development of the method is required before it becomes a useful tool in simulat-
ing incompressible fluid flows, particularly in the areas related to error accumulation in the
density field. It is possible that a different choice of projection operator may be one area that
could reduce this error accumulation. Additional work is also needed for cases involving
free surfaces and inflow and outflow boundary conditions.
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